

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OFCIVIL ENGINEERING

III Year – I Semester		L	T	P	C
		3	0	0	3
ENVIRONMENTAL ENGINEERING - II					

Course Learning Objectives:
The objective of this courses:
Outline planning and the design of wastewater collection, conveyance and treatment
systems for a community/town/city
Provide knowledge of characterization of wastewater generated in a community
Impart understanding of treatment of sewage and the need for its treatment.
Summarize the appurtenance in sewerage systems and the irnecessity
Teach planning, and design of septic tank and imhoff tank and the disposal of the
effluent from these low cost treatment systems
Effluent disposal method and realise the importance of regulations in the disposal of
effluents in rivers
Course Outcomes:
By the end of successful completion of this course, the students will be able to:
Plan and design the sewerage systems by estimating the flow
Design of Plumbing for an apartment, Gated community or Hotels or Individual
houses and Select the appropriate appurtenances in the sewerage systems
Estimation of BOD and COD and Suggest a suitable disposal method with respect to
effluent standards, and Identify the critical point of pollution in a river for a specific

- amount of pollutant disposal into the river
- □ Analyze sewage and design suitable treatment system for sewage treatment for a village/City.
- Design of sewage treatment systems like Septic tank soak pit system and FAB reactor for buildings and understanding tertiary treatment of sewage.

UNIT – I: Introduction to Sanitation – Systems of sanitation – relative merits & demerits - collection and conveyance of wastewater - sewerage - classification of sewerage systems- Estimation of sewage flow and storm water drainage – fluctuations - types of sewers - Hydraulics of sewers and storm drains- design of sewers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OFCIVIL ENGINEERING

UNIT – II: Sewer appurtenances – cleaning and ventilation of sewers. **Pumping of wastewater:** Pumping stations – location – components– types of pumps and their suitability with regard to wastewaters.

House Plumbing: Systems of plumbing-sanitary fittings and other accessories— one pipe and two pipe systems — Design of drainage in Gate communities, Apartments and Hotels.

UNIT – III: Sewage characteristics – Sampling and analysis of wastewater - Physical, Chemical and Biological Examination-Measurement of BOD and COD – BOD equations. ThOD and Nirogen Oxygen Demand. Ultimate Disposal of sewage: Methods of disposal – disposal into water bodies-Oxygen Sag Curve- Disposal into sea, disposal on land, Crown corrosion, Sewage sickness. Effluent standards.

UNIT – IV: Treatment of Sewage: Primary treatment- Screens- Grit chambers- Grease traps— floatation— Sedimentation — Design of preliminary and primary treatment units. Secondary treatment: Aerobic and anaerobic treatment process-comparison. Suspended growth process: Activated Sludge Process, principles, designs, and operational problems, modifications of Activated Sludge Processes, Oxidation ponds, Aerated Lagoons. Attached Growth Process: Trickling Filters — mechanism of impurities removal — classification — design, operation and maintenance problems. RBCs, Fluidized bed reactors.

UNIT V: Miscellaneous Treatment Methods: Nitrification and Denitrification-Removal of Phosphates – UASB–Membrane reactors- Integrated fixed film reactors. Anaerobic Processes: Septic Tanks and Imhoff tanks- working Principles and Design–Reuse and disposal of septic tank effluent, FAB Reactors. Bio-solids (Sludge) management: Characteristics-SVI, handling and treatment of sludge-thickening – anaerobic digestion of sludge, Sludge Drying Beds. Centrifuge. Case studies.

Text Books

- 1. Industrial Water and Wastewater Management, K.V.S.G. Murali Krishna.
- 2. Wastewater Engineering Treatment and Reuse, Metcalf & Eddy, Tata McGraw-Hill edition.
- 3. Elements of Environmental Engineering, K. N. Duggal, S. Chand & Company Ltd. New Delhi,2012.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OFCIVIL ENGINEERING

References

- 1. Environmental Engineering, Howard S. Peavy, Donald R. Rowe, Teorge George Tchobanoglus Mc-Graw-Hill Book Company, New Delhi, 1985
- **2.** Wastewater Treatment for Pollution Control and Reuse, Soli. J Arceivala, Sham R Asolekar, Mc-GrawHill, New Delhi; 3rdEdition
- **3.** Environmental Engineering –II: Sewage disposal and Air Pollution Engineering, Garg, S. K., Khanna Publishers
- 4. Sewage treatment and disposal, P. N. Modi & Seth.
- **5.** Environmental Engineering, Ruth F. Weiner and Robin Matthews 4th Edition Elsevier, 2003
- **6.** Environmental Engineering, D. Srinivasan, PHI Learning Private Limited, New Delhi, 2011.